
COP 4600: Intro To OS (Memory Management – Part 3) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2011

Introduction To Operating Systems

Memory Management – Part 3

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4600/sum2011

COP 4600: Intro To OS (Memory Management – Part 3) Page 2 © Dr. Mark Llewellyn

Memory Management

Memory Management Methods

Contiguous Allocation Non-Contiguous Allocation

Single Partition Multiple Partition

Fixed

Allocation

Dynamic

Allocation

Segmentation Paging

"Basic"

Paging
Demand

Paging

(Virtual Memory)

COP 4600: Intro To OS (Memory Management – Part 3) Page 3 © Dr. Mark Llewellyn

Virtual Memory
• The memory management schemes that we have seen so far are necessary

because of one basic requirement: The instructions being executed by the
processor must be in the physical memory of the machine.

• The first approach to meeting this requirement is to place the entire logical
address space (i.e., the entire process) into the main memory.

• Comparing simple paging and simple segmentation, on one hand, with fixed
and dynamic partitioning, on the other, we have the foundations for a more
sophisticated memory management system.

• There are two characteristics of paging and segmentation which are key:

1. All memory references within a process are logical addresses that are
dynamically translated into physical addresses at run time. This means that a
process can be swapped in and out of main memory such that it occupies
different regions of main memory at different times during its lifetime.

2. A process may be broken up into a number of chunks (either pages or segments)
and these chunks need not be contiguously located in main memory during
execution. The combination of dynamic run-time address translation and the use
of a page or segment table permits this.

COP 4600: Intro To OS (Memory Management – Part 3) Page 4 © Dr. Mark Llewellyn

Virtual Memory (cont.)

• Putting these two key elements together allows us to realize that it is not

necessary that all of the pages or segments of a process be in main memory

during execution.

• If the page or segment that holds the next instruction to be fetched and the

page or segment that holds the next data location to be access are both in

main memory, then at least for a time, the execution may proceed.

• The ability to execute a program that is only partially in main memory

provides many benefits, some of which are:

– A program is no longer constrained in size by the amount of physical memory.

Programmers could write programs for a very large virtual address space.

– The degree of multiprogramming can be increased since each user program

could take less physical memory.

– Less I/O is required to load or swap each user program into memory, so the

program would execute faster.

COP 4600: Intro To OS (Memory Management – Part 3) Page 5 © Dr. Mark Llewellyn

Virtual Memory (cont.)

• Virtual memory involves the separation of logical memory as

perceived by users from the physical memory.

• This separation allows an extremely large virtual memory to be

provided for programmers when only a much smaller physical

memory is available.

• The drawing on page 6 illustrates the basic concept of virtual

memory.

• The virtual address space of a process refers to the logical (or

virtual) view of how a process is stored in memory. The figure

on page 7 illustrates the virtual address space of a process.

COP 4600: Intro To OS (Memory Management – Part 3) Page 6 © Dr. Mark Llewellyn

Virtual Memory That is Larger Than Physical Memory

COP 4600: Intro To OS (Memory Management – Part 3) Page 7 © Dr. Mark Llewellyn

Virtual-address Space

The run-time stack (function

calls, etc.) grows vertically

downward in memory and the

heap (dynamic allocation)

grows vertically upwards.

The blank space between the

heap and the stack is part of

the virtual address space, but

requires actual physical

pages only if the heap or

stack grows.

COP 4600: Intro To OS (Memory Management – Part 3) Page 8 © Dr. Mark Llewellyn

Virtual Memory (cont.)

• In addition to separating logical memory from physical memory,

virtual memory also allows files and memory to be shared by two or

more processes through page sharing. This leads to the following

benefits:

– System libraries can be shared by several processes through mapping of the

shared object into a virtual address space. Although each process considers

the shared libraries to be part of its virtual address space, the actual pages

where the libraries reside in physical memory are shared by all of the

processes. (See figure on next page.) Typically, a library is mapped read-

only into the space of each process that is linked to it.

– Processes can share memory, by allowing one process to create a region of

memory that it can share with another process. Processes sharing this region

consider it part of their virtual address space, yet the actual physical pages of

memory are shared.

– Virtual memory can allow pages to be shared during process creation with

the fork()system call, thus speeding up process creation.

COP 4600: Intro To OS (Memory Management – Part 3) Page 9 © Dr. Mark Llewellyn

Shared Library Using Virtual Memory

COP 4600: Intro To OS (Memory Management – Part 3) Page 10 © Dr. Mark Llewellyn

• Virtual memory can be implemented using two techniques:

– Demand paging – As with simple paging, all memory pages and

process pages are of the same fixed size. The difference is that in

demand paging, only part of the process needs to be in main

memory. Process pages are loaded “on demand” as they are needed.

– Demand segmentation – Memory segments are of varying size as

with simple segmentation, however, as with demand paging, process

segments are loaded “on demand” as they are needed.

• Other than the addressing issues that we examined for both simple

paging and simple segmentation, the implementations of demand

paging and demand segmentation are very similar. As such, we

will focus primarily on demand paging.

Virtual Memory (cont.)

COP 4600: Intro To OS (Memory Management – Part 3) Page 11 © Dr. Mark Llewellyn

• Demand paging is similar to simple paging with swapping where

processes reside in secondary memory (usually a disk, commonly

referred to as the backing store).

• When a process is scheduled to be executed, it is swapped into

memory. Rather than swapping the entire process into memory, a

lazy swapper is used.

• A lazy swapper never swaps a page into memory unless that page

will be needed.

• Note: Since we are now viewing a process as a sequence of pages, rather than

as one large contiguous address space, use of the term swapper is technically

incorrect. A swapper manipulates entire processes, whereas a pager is

concerned with the individual pages of a process. In conjunction with demand

paging the term pager should be employed.

Demand Paging

COP 4600: Intro To OS (Memory Management – Part 3) Page 12 © Dr. Mark Llewellyn

Demand Paging (cont.)

• Since a page is loaded into main memory only when it is

needed, the question arises as to how does the system know

when a page is needed?

• A page is needed whenever a program statement makes a

reference (addresses a location) to a page.

• When a reference is made to a page one of three situations

will arise:

1. The referenced page is already in main memory. Action: do nothing.

2. The referenced page is not already in main memory. Action: load

page.

3. The reference is invalid (out of range, etc.). Action: abort process.

COP 4600: Intro To OS (Memory Management – Part 3) Page 13 © Dr. Mark Llewellyn

Transfer of a Paged Memory to Contiguous Disk Space

COP 4600: Intro To OS (Memory Management – Part 3) Page 14 © Dr. Mark Llewellyn

Demand Paging – Basic Concepts

• When a process is to be swapped in, the pager “guesses”

which pages will be used before the process is swapped out

again.

• By swapping in only those pages that will be used, the swap

time is decreased as is the amount of main memory that is

required.

• Hardware support is required to distinguish the pages that are

in memory and those that are on the disk (backing store).

• The valid-invalid bit scheme that we discussed in the context

of simple paging can be extended for use in this situation.

COP 4600: Intro To OS (Memory Management – Part 3) Page 15 © Dr. Mark Llewellyn

Valid-Invalid Bit

• With each page table entry a valid–invalid bit is associated

(v in-memory, i not-in-memory)

• Initially valid–invalid bit is set to i on all entries

• Example of a page table snapshot:

• During address translation, if

valid–invalid bit in page table entry

is i page-fault

v

v

v

v

i

i

i

….

Frame # valid-invalid bit

page table

COP 4600: Intro To OS (Memory Management – Part 3) Page 16 © Dr. Mark Llewellyn

Demand Paging – Basic Concepts (cont.)

• With demand paging, if the bit is set to “valid”, the associated

page is both legal (within the logical address space of the

process) and in memory.

• If the bit is set to “invalid”, the page is either not within the

logical address space of the process or is a valid address but is

currently not in the main memory (i.e., it is on the disk).

• A page table entry for a page that is currently in memory is

set in the same manner as with the simple paging scheme, but

the page table entry for a page that is not currently in memory

is either simply marked invalid, or contains the address of the

page on disk.

• This is illustrated in the figure on the next page.

COP 4600: Intro To OS (Memory Management – Part 3) Page 17 © Dr. Mark Llewellyn

Page Table When Some Pages Are Not in Main Memory

backing store

COP 4600: Intro To OS (Memory Management – Part 3) Page 18 © Dr. Mark Llewellyn

Demand Paging – Basic Concepts (cont.)

• Notice that marking a page invalid will have no effect if the process

never attempts to reference that page.

• Thus, if the pager guesses correctly and pages in only those pages

that are actually needed, the process will run exactly as though all

of its pages had been loaded.

• As long as the process executes and references pages that are

memory resident, execution will proceed normally.

• What happens if the process references a page that is not memory

resident? A page-fault occurs.

• A page-fault occurs whenever the paging hardware, in translating

the logical address through the page table, encounters the invalid

bit set. This generates a page-fault trap. This trap is the result of

the OS’s failure to bring the desired page into memory.

COP 4600: Intro To OS (Memory Management – Part 3) Page 19 © Dr. Mark Llewellyn

Page-Faults
• The procedure for handling a page-fault is straightforward

and consists of the following steps:

1. Check an internal table (usually maintained with the PCB) for this process

to determine whether the reference was a valid or invalid memory

reference.

2. If the reference was invalid, terminate the process. If it was valid, but the

page is not resident in memory, it must be paged in now.

3. Find a free frame in memory.

4. Schedule a disk operation (I/O) to read the desired page into the newly

allocated frame.

5. When the disk read is complete, modify the internal table kept with the

process and the page table to indicate that the page is now in memory.

6. Restart the instruction that was interrupted by the page-fault. The process

will now access the page as though it had always been in memory.

COP 4600: Intro To OS (Memory Management – Part 3) Page 20 © Dr. Mark Llewellyn

Steps in Handling a Page-Fault

COP 4600: Intro To OS (Memory Management – Part 3) Page 21 © Dr. Mark Llewellyn

Pure Demand Paging

• In the extreme case, a process can begin executing with no

pages in memory. When the OS sets the instruction pointer to

the first instruction of a process, which is on a non-resident

page, the process immediately faults for the page. After this

page is brought into memory, the process continues to

execute, faulting as necessary until every page that is needed

is in memory. At that point it will execute with no more

page-faults.

• This scheme is known as pure demand paging: never bring a

page into memory until it is referenced.

COP 4600: Intro To OS (Memory Management – Part 3) Page 22 © Dr. Mark Llewellyn

Pure Demand Paging (cont.)

• Theoretically, a process could access several new pages of

memory with each instruction execution (one page for the

instruction and several for data), possibly causing multiple

page-faults per instruction.

• Such a situation would result in very poor system

performance.

• Fortunately, analysis of running processes shows that this

type of behavior is exceedingly unlikely.

• Programs tend to have a locality of reference, which results in

reasonable performance from demand paging. We’ll deal

with issues surrounding locality of reference a bit later.

COP 4600: Intro To OS (Memory Management – Part 3) Page 23 © Dr. Mark Llewellyn

Hardware Support For Demand Paging

• The hardware required to support demand paging is the

same as the hardware for simple paging and swapping.

– Page table – This table has the ability to mark an entry

invalid through a valid-invalid bit or special value of

protection bits.

– Secondary memory – This memory holds those pages that

are not present in the main memory. This is typically a

high-speed disk. Commonly referred to as the backing

store or swap disk. The portion of this disk that is actually

used for the swapping operations is referred to as the swap

space.

COP 4600: Intro To OS (Memory Management – Part 3) Page 24 © Dr. Mark Llewellyn

Performance Of Demand Paging

• Demand paging can significantly affect the

performance of a computer system.

• In order to understand how this occurs, we’ll

compute a factor known as the effective access time.

• For most computer systems, the memory-access

time, denoted ma, ranges from 10 to 200

nanoseconds (10-200 x 10-9 seconds).

• As long as there are no page-faults, the effective

access time is the same as the memory access time.

COP 4600: Intro To OS (Memory Management – Part 3) Page 25 © Dr. Mark Llewellyn

Performance Of Demand Paging (cont.)

• If there is a page-fault, first the relevant page must

be read from disk and then the desired word within

that page must be read.

• Let p be the probability of a page-fault (0 ≤ p ≤ 1).

We would expect p to be close to 0, indicating only a

few page-faults.

• The effective access time is then:

EAT = (1 – p) * ma + p * page-fault time

• Thus, to compute the EAT, we must know how

much time is required to service a page-fault.

COP 4600: Intro To OS (Memory Management – Part 3) Page 26 © Dr. Mark Llewellyn

Performance Of Demand Paging (cont.)

• A page-fault causes the following sequence of events to occur:

1. Trap to the OS.

2. Save the user registers and process state.

3. Determine that the interrupt was a page-fault.

4. Check that the page reference was legal and determine location of page on disk.

5. Issue a read from the disk to a free frame.

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and/or latency time

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate CPU to some other user (only if multiprogramming).

7. Receive an interrupt from the disk I/O subsystem (I/O complete).

8. Save the registers and process state for the other user if step 6 is used.

9. Determine that the interrupt was from the disk.

10. Correct the page table and other tables to reflect new page in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers, process state, new page table, and resume interrupted
instruction.

COP 4600: Intro To OS (Memory Management – Part 3) Page 27 © Dr. Mark Llewellyn

Performance Of Demand Paging (cont.)

• Summarizing the process of handling a page-fault as shown on

the previous page, we realize that the process consists of three

major components:

1. Service the page-fault interrupt.

2. Read in the requested page.

3. Restart the process.

• The fist and third tasks can be reduced, with careful coding, to

several hundred instructions. These tasks may take from 1 to

100 μsec each.

• The page-switch time, however, will be closer to 8 msec.

• A typical hard disk has an average latency of about 3 msec., a

seek time of around 5 msec., and a transfer time of 0.05 msec.

COP 4600: Intro To OS (Memory Management – Part 3) Page 28 © Dr. Mark Llewellyn

Performance Of Demand Paging (cont.)

• Thus, the total paging time is around 8 msec., including

hardware and software time.

• Remember, that this time includes only the device-service time.

If a queue of processes is waiting for the device (other processes

that have caused page-faults), the device-queuing time must also

be added to our time, further increasing the time required to

effect a page swap.

• If we assume an average page-fault service time of 8 msec, and a

memory access time of 200 nsec., then the EAT in nanoseconds

is: EAT = (1 – p) * 200 + p (8 msec) = (1 – p) * 200 + p * 8,000,000

= 200 + p * 7,999,800

COP 4600: Intro To OS (Memory Management – Part 3) Page 29 © Dr. Mark Llewellyn

Performance Of Demand Paging (cont.)

• Thus, the effective access time is directly proportional to the

page-fault rate.

• If one access out of 1,000 causes a page-fault, then

EAT = 8.2 msec. This is a slowdown by a factor of 40!!

• If we want the system to be degraded less than 10%, then we

need the following to hold:

220 > 200 + 7,999,800 * p

20 > 7,999,800 * p

p < 0.0000025

• In other words, to keep the slowdown due to paging at a

reasonable level, we must allow fewer than one memory

reference out of 399,990 to page-fault.

• The page-fault rate must be kept low!

COP 4600: Intro To OS (Memory Management – Part 3) Page 30 © Dr. Mark Llewellyn

Additional Factors Affecting Demand Paging Performance

• The page size is an important hardware decision that will directly

affect the performance of a demand paged system.

• There are several factors to consider.

• One is internal fragmentation. The smaller the page size, the less

the amount of internal fragmentation. To optimize the use of

main memory we’d like to minimize the amount of internal

fragmentation. On the other hand, the smaller the page, the

greater the number of pages that will be required per process.

More pages per process means larger page tables. For large

programs in a heavily multi-programmed environment, this may

mean that some portion of the page tables of active processes

must be in virtual memory, not in main memory.

COP 4600: Intro To OS (Memory Management – Part 3) Page 31 © Dr. Mark Llewellyn

Additional Factors Affecting Demand Paging Performance

• This leads to the unfortunate situation of a double page fault for

a single reference to memory: first to bring in the needed portion

of the page table and a second to bring in the process page.

• Another factor is that the physical characteristics of most

secondary memory devices m which are rotational, favor a larger

page size for more efficient block transfer of data.

• Complicating these matters is the effect of page size on the rate

at which page faults occur. This behavior is linked closely to the

locality of reference (we’ll see this in more detail later), but can

be summarized in the following manner:

COP 4600: Intro To OS (Memory Management – Part 3) Page 32 © Dr. Mark Llewellyn

Additional Factors Affecting Demand Paging Performance

• If the page size is very small, the ordinarily a relatively large

number of pages will be available in main memory for a process.

• After a time, the pages in memory will all contain portions of the

process near recent references. Thus, the page fault rate should

be low.

• As the size of the page is increased, each individual page will

contain locations further and further from any particular recent

reference. Thus the effect of the principle of locality is

weakened and the page fault rate begins to rise.

• Eventually, however, the page fault rate will begin to fall as the

size of a page approaches the size of the entire process. When a

single page encompasses an entire process, there will be no page

faults.

COP 4600: Intro To OS (Memory Management – Part 3) Page 33 © Dr. Mark Llewellyn

Additional Factors Affecting Demand Paging Performance

COP 4600: Intro To OS (Memory Management – Part 3) Page 34 © Dr. Mark Llewellyn

Additional Factors Affecting Demand Paging Performance

• A further complication is that the page fault rate is also

determined by the number of page frames allocated to a process.

• The diagram on the next page illustrates that, for a fixed page

size, the fault rate drops as the number of pages maintained in

main memory increases.

• Thus, a software policy (the amount of memory to allocate to

each process) interacts with a hardware design decision (page

size).

COP 4600: Intro To OS (Memory Management – Part 3) Page 35 © Dr. Mark Llewellyn

Additional Factors Affecting Demand Paging Performance

COP 4600: Intro To OS (Memory Management – Part 3) Page 36 © Dr. Mark Llewellyn

Operating System Software

• The design of the memory management portion of an OS

depends on three fundamental areas of choice:

– Whether or not to use virtual memory techniques.

– The use of paging or segmentation or both.

– The algorithms employed for various aspects of memory management.

• The choices made in the first two areas depend almost

exclusively on the hardware platform available.

– For example, earlier UNIX implementations did not provide virtual

memory because the processors on which the system ran did not support

paging or segmentation. Neither of these techniques is practical without

hardware support for address translation and other basic functions.

COP 4600: Intro To OS (Memory Management – Part 3) Page 37 © Dr. Mark Llewellyn

Operating System Software

• The third area is summarized in the table below:

Fetch Policy

Demand

Pre-paging

Resident Set Management

Resident set size

Fixed

Variable

Replacement Scope

Global

Local

Placement Policy Cleaning Policy

Demand

Pre-cleaning

Replacement Policy

Basic Algorithms

Optimal

LRU

FIFO

Clock

Page Buffering

Load Control

Degree of Multi-programming

